Phosphorylation of human estrogen receptor alpha by protein kinase A regulates dimerization.
نویسندگان
چکیده
Phosphorylation provides an important mechanism by which transcription factor activity is regulated. Estrogen receptor alpha (ERalpha) is phosphorylated on multiple sites, and stimulation of a number of growth factor receptors and/or protein kinases leads to ligand-independent and/or synergistic increase in transcriptional activation by ERalpha in the presence of estrogen. Here we show that ERalpha is phosphorylated by protein kinase A (PKA) on serine-236 within the DNA binding domain. Mutation of serine-236 to glutamic acid prevents DNA binding by inhibiting dimerization by ERalpha, whereas mutation to alanine has little effect on DNA binding or dimerization. Furthermore, PKA overexpression or activation of endogenous PKA inhibits dimerization in the absence of ligand. This inhibition is overcome by the addition of 17beta-estradiol or the partial agonist 4-hydroxy tamoxifen. Interestingly, treatment with the complete antagonist ICI 182,780 does not overcome the inhibitory effect of PKA activation. Our results indicate that in the absence of ligand ERalpha forms dimers through interaction between DNA binding domains and that dimerization mediated by the ligand binding domain only occurs upon ligand binding but that the complete antagonist ICI 182,780 prevents dimerization through the ligand-binding domain. Heterodimer formation between ERalpha and ERbeta is similarly affected by PKA phosphorylation of serine 236 of ERalpha. However, 4-hydroxytamoxifen is unable to overcome inhibition of dimerization by PKA. Thus, phosphorylation of ERalpha in the DNA binding domain provides a mechanism by which dimerization and thereby DNA binding by the estrogen receptor is regulated.
منابع مشابه
Estrogenic Activity of Some Phytoestrogens on Bovine Oxytocin and Thymidine Kinase-ERE Promoter through Estrogen Receptor-α in MDA-MB 231 Cells
Background: Phytoestrogens, a group of plant-derived polyphenolic compounds have recently come into considerable attention due to the increasing information on their potential adverse effects in human health. Some of phytoestrogens show estrogenic activity that may be carcinogenic for human. In the present study, we investigated the transcriptional effects of variety of phytoestrogens ...
متن کاملPhosphorylation of Estrogen Receptor Blocks Its Acetylation and Regulates Estrogen Sensitivity
Estrogen receptor (ER) is mutated (lysine 303 to arginine, K303R) in approximately one third of premalignant breast hyperplasias, which renders breast cancer cells expressing the mutant receptor hypersensitive for proliferation in response to low doses of estrogen. It is known that ER is posttranslationally modified by protein acetylation and phosphorylation by a number of secondary messenger s...
متن کاملPhosphorylation-induced dimerization of interferon regulatory factor 7 unmasks DNA binding and a bipartite transactivation domain.
Interferon regulatory factor 7 (IRF7) is an interferon (IFN)-inducible transcription factor required for activation of a subset of IFN-alpha genes that are expressed with delayed kinetics following viral infection. IRF7 is synthesized as a latent protein and is posttranslationally modified by protein phosphorylation in infected cells. Phosphorylation required a carboxyl-terminal regulatory doma...
متن کاملEstrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice.
We have shown previously in the developing cerebral cortex that estrogen elicits the rapid and sustained activation of multiple signaling proteins within the mitogen-activated protein (MAP) kinase cascade, including B-Raf and extracellular signal-regulated kinase (ERK). Using estrogen receptor (ER)-alpha gene-disrupted (ERKO) mice, we addressed the role of ER-alpha in mediating this action of e...
متن کاملRegulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation.
Estrogen receptors are phosphoproteins which can be activated by ligands, kinase activators, or phosphatase inhibitors. Our previous study showed that p38 mitogen-activated protein kinase was involved in estrogen receptor activation by estrogens and MEKK1. Here, we report estrogen receptor-dependent p38 activation by estrogens in endometrial adenocarcinoma cells and in vitro and in vivo phospho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 19 2 شماره
صفحات -
تاریخ انتشار 1999